Sains Malaysiana 52(11)(2023): 3135-3145

http://doi.org/10.17576/jsm-2023-5211-09

 

Glucomannan Content Stability of Eddoe Taro Tuber Based on Parametric, Non-Parametric, and Ammi Analysis

(Kestabilan Kandungan Glukomanan Ubi Taro Eddoe Berdasarkan Analisis Parametrik, Bukan Parametrik dan Ammi)

 

DELVI MARETTA1,*, IS HELIANTI2, EDI SANTOSA3, RIDWAN DIAGUNA3, PURWONO3 & SOBIR3

 

1Research Center for Horticultural and Estate Crops, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Bogor KM 46, Cibinong

Kabupaten Bogor 16915, Indonesia

2Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Bogor KM 46, Cibinong

Kabupaten Bogor 16915, Indonesia

3Department Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University, Jl Meranti Kampus IPB Darmaga, Bogor 16680,  Indonesia

 

Received: 28 April 2023/Accepted: 24 October 2023

 

Abstract

The consumption of taro tuber as an energy source is widespread due to its composition of complex carbohydrates, including starch and non-starch polysaccharides. Glucomannan is one of the non-starch polysaccharides found in taro tuber and has been shown to be a dietary fiber with positive effects on health and beauty. The development of new varieties of taro tuber with high glucomannan content is challenging and requires significant effort in order to produce high-quality food. Therefore, this study aimed to investigate the stability of glucomannan content among 14 eddoe taro tuber genotypes using parametric, non-parametric, and AMMI methods, and to determine genotypes with high glucomannan stability. The experiments were conducted in three different agro-climatic locations using a randomized full-block design. Glucomannan content of taro tuber was analyzed from a mixture of corms and cormlets harvested 5 months after planting following the gravimetric method. The combined analysis of variance for glucomannan content showed significant effects of the environment, genotypes, and G×E interaction. Genotypes S7, S35, S15, S18, S17, S34, and S24 produced glucomannan levels higher than the overall average, but genotypes S7, S17, S18, and S34 consistently displayed higher glucomannan content than the average in each experimental site. Parametric and non-parametric measurements provided comparable results. Based on parametric stability analysis, genotype S34 showed high-rank stability (Wᵢ², σ²ᵢ, CVi value). Additionally, genotypes S34 and S18 demonstrated high stability according to bᵢ, and genotypes S17 exhibited stability according to the s²dᵢ value. Non-parametric stability analysis showed that S34 was the most stable genotypes base on Nassar Huehn, Kang-Rangksum, and Thennarasu theories. Genotypes S7 was also identified as stable, according to Kang-Rangksum. The AMMI analysis indicated that genotypes S34, S17, and S7 were high glucomannan yielders, with S34 displaying wide adaptation and S17 and S7 having specific location adaptation.

 

Keywords: Adaptation; environment; non-starch polysaccharides; selection; superior genotype

 

Abstrak

Penggunaan ubi keladi sebagai punca tenaga semakin meluas kerana komposisi karbohidrat kompleks yang terkandung meliputi kanji dan bukan-kanji polisakarida. Glucomannan termasuk kelas bukan-kanji-polisakarida yang terdapat dalam ubi keladi dan mempunyai bukti sebagai serat makanan yang mempunyai kesan positif terhadap kesihatan dan kecantikan. Penciptaan varieti baru tanaman keladi dengan kandungan glukomanan yang tinggi adalah mencabar dan memerlukan usaha yang besar untuk menghasilkan makanan yang berkualiti tinggi. Oleh itu, penyelidikan ini bertujuan untuk mengkaji kestabilan kandungan glukomanan dalam kalangan 14 genotip ubi keladi  eddoe menggunakan kaedah parametrik, tak-parametrik dan AMMI serta untuk menentukan genotip dengan kestabilan glukomanan yang tinggi. Percubaan telah dijalankan di tiga lokasi dengan agro-iklim berbeza menggunakan reka bentuk blok rawak lengkap. Kandungan glukomanan ubi keladi dianalisis daripada campuran corm dan cormlet yang dituai 5 bulan selepas di tanam mengikut kaedah gravimetrik. Gabungan analisis varians bagi kandungan glukomanan menunjukkan kesan ketara terhadap sekitaran, genotip dan interaksi G×E. Genotip S7, S35, S15, S18, S17, S34 dan S24 menghasilkan tahap glukomanan lebih tinggi daripada purata keseluruhan, tetapi genotip S7, S17, S18 dan S34 secara tekal menunjukkan kandungan glukomanan yang lebih tinggi daripada purata di setiap tapak percubaan. Pengukuran parametrik dan tak-parametrik memberikan hasil yang setanding. Berdasarkan analisis kestabilan parametrik, genotip S34 menunjukkan kestabilan peringkat tinggi (Wᵢ², σ²ᵢ, CVi-value). Selain itu, genotip S34 dan S18 menunjukkan kestabilan yang tinggi mengikut nilai bᵢ dan genotip S17 menunjukkan kestabilan mengikut nilai s²dᵢ. Analisis kestabilan tak-parametrik menunjukkan bahawa S34 adalah genotip paling stabil berdasarkan teori Nassar Huehn, Kang-Rangksum dan Thennarasu. Genotip S7 juga dikenal pasti sebagai stabil mengikuti Kang-Rangksum. Analisis AMMI menunjukkan bahawa genotip S34, S17 dan S7 adalah hasil glukomanan yang tinggi, dengan S34 memiliki kemampuan adaptasi sekitaran yang luas sedangkan S17 dan S7 mempunyai penyesuaian khusus.

 

Kata kunci: Genotip unggul; pemilihan; penyesuaian; sekitaran; tak-berkanji polisakarida

 

REFERENCES

Aboughadareh, P.A., Yousefian, M., Moradkhani, H., Poczai, P. & Siddique, K.H.M. 2019. Stabilitysoft: A new online program to calculate parametric and non-parametric stability statistics for crop traits. Applications in Plant Sciences 7(1): 1-6. https://doi.org/10.1002/aps3.1211

Adugna, W. & Labuschagne, M.T. 2003. Parametric and nonparametric measures of phenotypic stability in linseed (Linum usitatissimum L.). Euphytica 129(2): 211-218. https://doi.org/10.1023/A:1021979303319

Bateni, E., Tester, R., Al-Ghazzewwi, F., Bateni, S., Alvani, K. & Piggott, J. 2013. The use of konjac glucomannan hydrolysates (GMH) to ımprove the health of the skin and reduce acne vulgaris. American Journal of Dermatology and Venereology 2(2): 10-14. https://doi.org/10.5923/j.ajdv.20130202.02

Behera, S.S. & Ray, R.C. 2016. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. International Journal of Biological Macromolecules 92: 942-956. https://doi.org/10.1016/j.ijbiomac.2016.07.098

Chaïr, H., Traore, R.E., Duval, M.F., Rivallan, R., Mukherjee, A., Aboagye, L.M., Van Rensburg, W.J., Andrianavalona, V., De Pinheiro Carvalho, M.A.A., Saborio, F., Sri Prana, M., Komolong, B., Lawac, F. & Lebot, V. 2016. Genetic diversification and dispersal of taro (Colocasia esculenta (L.) Schott). PLoS ONE 11(6): E0157712. https://doi.org/10.1371/journal.pone.0157712

Chairul, C. & Chairul, S.M. 2006. Isolasi glukomanan dari dua jenis araceae: Talas (Colocasia esculenta (L.) Schott) dan Iles-ıles (Amorphophallus campanulatus Blumei). Berita Bio 8(3): 171-178.

Eberhart, S.A. & Russell, W.A. 1966. Stability parameters for comparing varieties. Crop Science 6(1): 36-40. https://doi.org/10.2135/cropsci1966.0011183x000600010011x

Etminan, A., Aboughadadareh, A.P., Mohammadi, R., Shooshtari, L., Yousefiazarkhanian, M. &  Moradkhani, H. 2019. Determining the best drought tolerance ındices using artificial neural network (ANN): Insight into application of ıntelligent agriculture in agronomy and plant breeding. Cereal Research Communications 47(1): 170-181. https://doi.org/10.1556/0806.46.2018.057

Fasahat, P., Rajabil, A., Mahmoudi, S.B., Noghabi, M.A. & Rad, J.M. 2015. An overview on the use of stability parameters in plant breeding. Biometrics & Biostatistics International Journal 2(5): 149-159. https://doi.org/10.15406/bbij.2015.02.00043

Finlay, K.W. & Wilkinson, G.N. 1963. The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research 14(6): 742-754. https://doi.org/10.1071/AR9630742

Ganança, J.F.T., Freitasa, J.G.F., Nóbregaa, H.G.M., Rodriguesa, V., Antunesa, G., Rodriguesc, M., Miguel de Carvalhoa, A.A.P. & Lebot, V. 2015. Screening of elite and local taro (Colocasia esculenta) cultivars for drought tolerance. Procedia Environmental Sciences 29: 41-42. https://doi.org/10.1016/j.proenv.2015.07.146

Hebbache, H., Benkherbach, N., Mefti, M., Bendada, H., Achouche, A. & Kenzi, L.H. 2021. Genotype by environment ınteraction analysis of barley grain yield in the rain-fed regions of algeria using AMMI model. Acta Fytotechnica et Zootechnica 24(2): 117-123. https://doi.org/10.15414/afz.2021.24.02.117-123

Kang, M.S. 1988. A rank-sum method for selecting high-yielding stable corn genotypes. Cereal Research Communication 16: 113-115.

Kang, M.S., Aggarwal, V.D. & Chirwa, R.M. 2006. Adaptability and stability of bean cultivars as determined via yield-stability statistic and GGE biplot analysis. Journal of Crop Improvement 15(1): 97-120. DOI: 10.1300/J411v15n01_08

Kebede, A. & Getahun, A. 2017. Adaptability and stability analysis of groundnut genotypes using AMMI model and GGE-Biplot. Journal of Crop Science and Biotechnology 20(5): 343-349. https://doi.org/10.1007/s12892-017-0061-0

Kılıç, H. 2014. Additive main effects and multiplicative ınteractions (AMMI) analysis of grain yield in barley genotypes across environments. Journal of Agricultural Sciences 20: 337-344.

Li, H., Dong, Z., Liu, X., Chen, H., Lai, F. & Zhang, M. 2018. Structure characterization of two novel polysaccharides from Colocasia esculenta (taro) and a comparative study of their ımmunomodulatory activities. Journal of Functional Foods 42: 47-57. https://doi.org/10.1016/j.jff.2017.12.067

Maretta, D., Sobir, Helianti, I., Purwono & Santosa, E. 2020. Genetic diversity in eddoe taro (Colocasia esculenta var. Antiquorum) from Indonesia based on morphological and nutritional characteristics. Biodiversitas 21(8): 3525-3533. https://doi.org/10.13057/biodiv/d210814

Mortazavian, S.M.M., Nikkhah, H.R., Hassani, F.A., al-Hossein, M.S., Taheri, M. &  Mahlooji, M. 2014. GGE Biplot and AMMI analysis of yield performance of barley genotypes across environments in Iran. Agr. Sci.Tech. 16: 609-622.

Nassar, R. & Hühn, M. 1987. Studies on estimation of phenotypic stability: Tests of significance for non-parametric measures of phenotypic stability. Biometrics 43: 45- 53.

Novianti, P., Mattjik, A.A. & Sumertajaya, I.M. 2010. Pendugaan kestabilan genotipe pada model AMMI menggunakan metode resampling bootstrap. Forum Statistika dan Komputasi 15(1): 28-35.

Oladimeji, J.J., Kumar, P.L., Abe, A., Vetukuri, R.R. & Bhattacharjee, R. 2022. Taro in West Africa: Status, challenges, and opportunities. Agronomy 12(9): 2094. https://doi.org/10.3390/agronomy12092094

Oliveira, E.J., Freitas, J.P.X. & Jesus, O.N. 2014. Adaptability and stability analysis of the juice yield of yellow passion fruit varieties. Genetics and Molecular Research 13(3): 6512-6527. https://doi.org/10.4238/2014.August.26.2

Pramadio, L., Saptadi, D. & Soegianto, A. 2018. Penampilan karakter agronomi genotipe potensial buncis polong kuning (Phaseoulus vulgaris L.) pada ketinggian tempat yang berbeda. Plantropica Journal of Agricultural Science 3(1): 23-28.

Sabaghnia, N., Dehghani, H. & Sabaghpour, S.H. 2006. Nonparametric methods for ınterpreting genotype × environment ınteraction of lentil genotypes. Crop Science 46(3): 1100-1106. https://doi.org/10.2135/cropsci2005.06-0122

Saeed, F., Hussaina, M., Arshada, M.S., Afzaala, M., Munira, H., Imran, M., Tufail, T. & Anjum, F.M. 2021. Functional and nutraceutical properties of maize bran cell wall non-starch polysaccharides. International Journal of Food Properties 24(1): 233-248. https://doi.org/10.1080/10942912.2020.1858864

Shah, B.R., Li, B., Wang, L., Liu, S., Li, Y., Wei, X., Weiping, J. & Zhenshuna, L. 2015. Health benefits of konjac glucomannan with special focus on diabetes. Bioactive Carbohydrates and Dietary Fibre 5: 179-187. https://doi.org/10.1016/j.bcdf.2015.03.007

Syukur, M., Sujiprihati, S. & Yunianti, R. 2015. Teknik Pemuliaan Tanaman. Bogor: Penebar Swadaya. p. 348.

Temesgen, M. &  Retta, N. 2015. Nutritional potential, health and foods security benefits of taro Colocasia esculenta (L.): A review. Food Science and Quality Management 36: 23-31.

Temesgen, T., Keneni, G., Sefera, T. & Jarso, M. 2015. Yield stability and relationships among stability parameters in faba bean (Vicia faba L.) genotypes. Crop Journal 3(3): 258-268. https://doi.org/10.1016/j.cj.2015.03.004

Tester, R.F. & Al-Ghazzewi, F.H. 2016. Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan. J. Sci. FoodAgric. 96: 3283-3291. https://doi.org/10.1002/jsfa.7571

Widjanarko, S.B. & Megawati, J. 2015. Analisis metode kolorimetri dan gravimetri pengukuran kadar glukomanan pada konjak (Amorphophallus konjac). Jurnal Pangan dan Agroindustri 3(4): 1584-1588.

Zalewski, B.M., Chmielewska, A. & Szajewska, H. 2015. The effect of glucomannan on body weight in overweight or obese children and adults: A systematic review of randomized controlled trials. Nutrition 31(3): 437-442.e2. https://doi.org/10.1016/j.nut.2014.09.004

 

*Corresponding author; email: delvi.maretta@brin.go.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous