Sains Malaysiana 52(11)(2023): 3135-3145
http://doi.org/10.17576/jsm-2023-5211-09
Glucomannan Content Stability of Eddoe Taro Tuber Based on Parametric, Non-Parametric, and Ammi Analysis
(Kestabilan Kandungan Glukomanan Ubi
Taro Eddoe Berdasarkan Analisis Parametrik, Bukan Parametrik dan Ammi)
DELVI MARETTA1,*, IS HELIANTI2,
EDI SANTOSA3, RIDWAN DIAGUNA3, PURWONO3 &
SOBIR3
1Research Center for Horticultural and Estate Crops,
National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl.
Raya Bogor KM 46, Cibinong
Kabupaten Bogor 16915, Indonesia
2Research Center for Applied Microbiology, National
Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Bogor
KM 46, Cibinong
Kabupaten Bogor 16915, Indonesia
3Department
Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural
University, Jl Meranti Kampus IPB Darmaga, Bogor 16680, Indonesia
Received: 28 April 2023/Accepted: 24
October 2023
Abstract
The consumption of taro tuber as an energy source is widespread due to
its composition of complex carbohydrates, including starch and non-starch
polysaccharides. Glucomannan is one of the non-starch polysaccharides found in
taro tuber and has been shown to be a dietary fiber with positive effects on health
and beauty. The development of new varieties of taro tuber with high
glucomannan content is challenging and requires significant effort in order to
produce high-quality food. Therefore, this study aimed to
investigate the stability of glucomannan content among 14 eddoe taro tuber
genotypes using parametric, non-parametric, and AMMI methods, and to determine
genotypes with high glucomannan stability. The experiments were conducted in
three different agro-climatic locations using a randomized full-block design.
Glucomannan content of taro tuber was analyzed from a mixture of corms and
cormlets harvested 5 months after planting following the gravimetric method.
The combined analysis of variance for glucomannan content showed significant
effects of the environment, genotypes, and G×E interaction. Genotypes S7, S35,
S15, S18, S17, S34, and S24 produced glucomannan levels higher than the overall
average, but genotypes S7, S17, S18, and S34 consistently displayed higher
glucomannan content than the average in each experimental site. Parametric and
non-parametric measurements provided comparable results. Based on parametric
stability analysis, genotype S34 showed high-rank stability (Wᵢ², σ²ᵢ,
CVi value). Additionally, genotypes S34 and S18 demonstrated high stability
according to bᵢ, and genotypes S17 exhibited stability according to the s²dᵢ value. Non-parametric
stability analysis showed that S34 was the most stable genotypes base on Nassar Huehn,
Kang-Rangksum, and Thennarasu theories. Genotypes S7 was also identified as stable,
according to Kang-Rangksum. The AMMI analysis indicated that genotypes S34,
S17, and S7 were high glucomannan yielders, with S34 displaying wide adaptation
and S17 and S7 having specific location adaptation.
Keywords: Adaptation; environment; non-starch polysaccharides; selection; superior genotype
Abstrak
Penggunaan ubi keladi sebagai punca tenaga semakin
meluas kerana komposisi karbohidrat kompleks yang terkandung meliputi kanji dan
bukan-kanji polisakarida. Glucomannan termasuk kelas bukan-kanji-polisakarida
yang terdapat dalam ubi keladi dan mempunyai bukti sebagai serat makanan yang
mempunyai kesan positif terhadap kesihatan dan kecantikan. Penciptaan varieti
baru tanaman keladi dengan kandungan glukomanan yang tinggi adalah mencabar dan
memerlukan usaha yang besar untuk menghasilkan makanan yang berkualiti tinggi.
Oleh itu, penyelidikan ini bertujuan untuk mengkaji kestabilan kandungan
glukomanan dalam kalangan 14 genotip ubi keladi eddoe menggunakan kaedah parametrik, tak-parametrik dan AMMI serta untuk
menentukan genotip dengan kestabilan glukomanan yang tinggi. Percubaan telah
dijalankan di tiga lokasi dengan agro-iklim berbeza menggunakan reka bentuk
blok rawak lengkap. Kandungan glukomanan ubi keladi dianalisis daripada
campuran corm dan cormlet yang dituai 5 bulan selepas di tanam mengikut kaedah
gravimetrik. Gabungan analisis varians bagi kandungan glukomanan menunjukkan
kesan ketara terhadap sekitaran, genotip dan interaksi G×E. Genotip S7, S35,
S15, S18, S17, S34 dan S24 menghasilkan tahap glukomanan lebih tinggi daripada
purata keseluruhan, tetapi genotip S7, S17, S18 dan S34 secara tekal
menunjukkan kandungan glukomanan yang lebih tinggi daripada purata di setiap
tapak percubaan. Pengukuran parametrik dan tak-parametrik memberikan hasil yang
setanding. Berdasarkan analisis kestabilan parametrik, genotip S34 menunjukkan
kestabilan peringkat tinggi (Wᵢ², σ²ᵢ, CVi-value). Selain itu,
genotip S34 dan S18 menunjukkan kestabilan yang tinggi mengikut nilai bᵢ
dan genotip S17 menunjukkan kestabilan mengikut nilai s²dᵢ. Analisis
kestabilan tak-parametrik menunjukkan bahawa S34 adalah genotip paling stabil
berdasarkan teori Nassar Huehn, Kang-Rangksum dan Thennarasu. Genotip S7 juga
dikenal pasti sebagai stabil mengikuti Kang-Rangksum. Analisis AMMI menunjukkan
bahawa genotip S34, S17 dan S7 adalah hasil glukomanan yang tinggi, dengan S34
memiliki kemampuan adaptasi sekitaran yang luas sedangkan S17 dan S7 mempunyai
penyesuaian khusus.
Kata kunci: Genotip unggul; pemilihan; penyesuaian;
sekitaran; tak-berkanji polisakarida
REFERENCES
Aboughadareh,
P.A., Yousefian, M., Moradkhani, H., Poczai, P. & Siddique, K.H.M. 2019.
Stabilitysoft: A new online program to calculate parametric and non-parametric
stability statistics for crop traits. Applications in Plant Sciences 7(1): 1-6. https://doi.org/10.1002/aps3.1211
Adugna, W. & Labuschagne, M.T. 2003. Parametric and nonparametric
measures of phenotypic stability in linseed (Linum usitatissimum L.). Euphytica 129(2): 211-218. https://doi.org/10.1023/A:1021979303319
Bateni, E., Tester, R., Al-Ghazzewwi, F., Bateni, S., Alvani, K. &
Piggott, J. 2013. The use of konjac glucomannan hydrolysates (GMH) to
ımprove the health of the skin and reduce acne vulgaris. American
Journal of Dermatology and Venereology 2(2): 10-14.
https://doi.org/10.5923/j.ajdv.20130202.02
Behera, S.S.
& Ray, R.C. 2016. Konjac glucomannan, a
promising polysaccharide of Amorphophallus konjac K. Koch in health
care. International Journal of Biological Macromolecules 92: 942-956.
https://doi.org/10.1016/j.ijbiomac.2016.07.098
Chaïr, H., Traore, R.E., Duval, M.F., Rivallan, R., Mukherjee, A.,
Aboagye, L.M., Van Rensburg, W.J., Andrianavalona, V., De Pinheiro Carvalho,
M.A.A., Saborio, F., Sri Prana, M., Komolong, B., Lawac, F. & Lebot, V.
2016. Genetic diversification and dispersal of taro (Colocasia esculenta (L.) Schott). PLoS ONE 11(6): E0157712.
https://doi.org/10.1371/journal.pone.0157712
Chairul, C. & Chairul, S.M. 2006. Isolasi glukomanan dari dua jenis
araceae: Talas (Colocasia esculenta (L.) Schott) dan Iles-ıles (Amorphophallus
campanulatus Blumei). Berita Bio 8(3): 171-178.
Eberhart, S.A. & Russell, W.A. 1966. Stability parameters for
comparing varieties. Crop Science 6(1): 36-40.
https://doi.org/10.2135/cropsci1966.0011183x000600010011x
Etminan, A., Aboughadadareh, A.P., Mohammadi, R., Shooshtari, L.,
Yousefiazarkhanian, M. & Moradkhani,
H. 2019. Determining the best drought tolerance ındices using artificial
neural network (ANN): Insight into application of ıntelligent agriculture
in agronomy and plant breeding. Cereal Research Communications 47(1):
170-181. https://doi.org/10.1556/0806.46.2018.057
Fasahat, P., Rajabil, A., Mahmoudi, S.B., Noghabi, M.A. & Rad, J.M. 2015.
An overview on the use of stability parameters in plant breeding. Biometrics
& Biostatistics International Journal 2(5): 149-159.
https://doi.org/10.15406/bbij.2015.02.00043
Finlay, K.W. & Wilkinson, G.N. 1963. The analysis of adaptation in a
plant-breeding programme. Australian Journal of Agricultural Research 14(6): 742-754. https://doi.org/10.1071/AR9630742
Ganança, J.F.T., Freitasa, J.G.F., Nóbregaa, H.G.M., Rodriguesa, V.,
Antunesa, G., Rodriguesc, M., Miguel de Carvalhoa, A.A.P. & Lebot, V. 2015.
Screening of elite and local taro (Colocasia esculenta) cultivars for
drought tolerance. Procedia Environmental Sciences 29: 41-42.
https://doi.org/10.1016/j.proenv.2015.07.146
Hebbache, H., Benkherbach, N., Mefti, M., Bendada, H., Achouche, A. &
Kenzi, L.H. 2021. Genotype by environment ınteraction analysis of barley
grain yield in the rain-fed regions of algeria using AMMI model. Acta
Fytotechnica et Zootechnica 24(2): 117-123.
https://doi.org/10.15414/afz.2021.24.02.117-123
Kang, M.S. 1988. A rank-sum method for selecting high-yielding stable corn
genotypes. Cereal Research Communication 16: 113-115.
Kang,
M.S., Aggarwal, V.D. & Chirwa, R.M. 2006. Adaptability and stability of
bean cultivars as determined via yield-stability statistic and GGE biplot
analysis. Journal of Crop Improvement 15(1): 97-120. DOI:
10.1300/J411v15n01_08
Kebede, A. & Getahun, A. 2017. Adaptability and stability analysis of
groundnut genotypes using AMMI model and GGE-Biplot. Journal of Crop Science
and Biotechnology 20(5): 343-349. https://doi.org/10.1007/s12892-017-0061-0
Kılıç, H. 2014. Additive main effects and multiplicative ınteractions
(AMMI) analysis of grain yield in barley genotypes across environments. Journal
of Agricultural Sciences 20: 337-344.
Li, H., Dong, Z., Liu, X., Chen, H., Lai, F. & Zhang, M. 2018.
Structure characterization of two novel polysaccharides from Colocasia
esculenta (taro) and a comparative study of their ımmunomodulatory
activities. Journal of Functional Foods 42: 47-57.
https://doi.org/10.1016/j.jff.2017.12.067
Maretta, D., Sobir, Helianti, I., Purwono & Santosa, E. 2020. Genetic
diversity in eddoe taro (Colocasia esculenta var. Antiquorum) from
Indonesia based on morphological and nutritional characteristics. Biodiversitas 21(8): 3525-3533. https://doi.org/10.13057/biodiv/d210814
Mortazavian, S.M.M., Nikkhah, H.R., Hassani, F.A., al-Hossein, M.S.,
Taheri, M. & Mahlooji, M. 2014. GGE
Biplot and AMMI analysis of yield performance of barley genotypes across
environments in Iran. Agr. Sci.Tech. 16: 609-622.
Nassar, R. & Hühn, M. 1987. Studies on estimation of phenotypic
stability: Tests of significance for non-parametric measures of phenotypic
stability. Biometrics 43: 45- 53.
Novianti, P., Mattjik, A.A. & Sumertajaya, I.M. 2010. Pendugaan
kestabilan genotipe pada model AMMI menggunakan metode resampling bootstrap. Forum
Statistika dan Komputasi 15(1): 28-35.
Oladimeji, J.J., Kumar, P.L., Abe, A., Vetukuri, R.R. & Bhattacharjee,
R. 2022. Taro in West Africa: Status, challenges, and opportunities. Agronomy 12(9): 2094. https://doi.org/10.3390/agronomy12092094
Oliveira, E.J., Freitas, J.P.X. & Jesus, O.N. 2014. Adaptability and
stability analysis of the juice yield of yellow passion fruit varieties. Genetics
and Molecular Research 13(3): 6512-6527.
https://doi.org/10.4238/2014.August.26.2
Pramadio, L., Saptadi, D. & Soegianto, A. 2018. Penampilan karakter
agronomi genotipe potensial buncis polong kuning (Phaseoulus vulgaris L.) pada ketinggian tempat yang berbeda. Plantropica Journal of Agricultural
Science 3(1): 23-28.
Sabaghnia, N., Dehghani, H. & Sabaghpour, S.H. 2006. Nonparametric
methods for ınterpreting genotype × environment ınteraction of lentil
genotypes. Crop Science 46(3): 1100-1106.
https://doi.org/10.2135/cropsci2005.06-0122
Saeed, F., Hussaina, M., Arshada, M.S., Afzaala, M., Munira, H., Imran,
M., Tufail, T. & Anjum, F.M. 2021. Functional and nutraceutical properties
of maize bran cell wall non-starch polysaccharides. International Journal of
Food Properties 24(1): 233-248.
https://doi.org/10.1080/10942912.2020.1858864
Shah, B.R., Li, B., Wang, L., Liu, S., Li, Y., Wei, X., Weiping, J. &
Zhenshuna, L. 2015. Health benefits of konjac glucomannan with special focus on
diabetes. Bioactive Carbohydrates and Dietary Fibre 5: 179-187.
https://doi.org/10.1016/j.bcdf.2015.03.007
Syukur, M., Sujiprihati, S. & Yunianti, R. 2015. Teknik Pemuliaan
Tanaman. Bogor: Penebar Swadaya. p. 348.
Temesgen, M. & Retta, N. 2015.
Nutritional potential, health and foods security benefits of taro Colocasia
esculenta (L.): A review. Food Science and Quality Management 36:
23-31.
Temesgen, T., Keneni, G., Sefera, T. & Jarso, M. 2015. Yield stability
and relationships among stability parameters in faba bean (Vicia faba L.) genotypes. Crop Journal 3(3): 258-268.
https://doi.org/10.1016/j.cj.2015.03.004
Tester, R.F. & Al-Ghazzewi, F.H. 2016. Beneficial health
characteristics of native and hydrolysed konjac (Amorphophallus konjac)
glucomannan. J. Sci. FoodAgric. 96: 3283-3291.
https://doi.org/10.1002/jsfa.7571
Widjanarko, S.B. & Megawati, J. 2015. Analisis metode
kolorimetri dan gravimetri pengukuran kadar glukomanan pada konjak (Amorphophallus konjac). Jurnal Pangan dan Agroindustri 3(4): 1584-1588.
Zalewski, B.M., Chmielewska, A. & Szajewska, H. 2015. The effect of
glucomannan on body weight in overweight or obese children and adults: A
systematic review of randomized controlled trials. Nutrition 31(3):
437-442.e2. https://doi.org/10.1016/j.nut.2014.09.004
*Corresponding author; email: delvi.maretta@brin.go.id
|